A A7046

		_
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017	
	Course Code: MA201	
	Course Name: LINEAR ALGEBRA AND COMPLEX ANALYSIS	
ax. N		Hours
		Marks
3)		(7)
a)		(1)
	points?	
b)	If $v = e^x (x \sin y + y \cos y)$, find an analytic function $f(z)=u+iv$.	(8)
a)	Show that $u = x^2-y^2-y$ is harmonic. Also find the corresponding conjugate harmonic	(7)
	function.	
b)	(i) Find a bilinear transformation which maps $(-i, 0, i)$ onto $(0, -1, \infty)$.	(8)
	(ii) Test the continuity at $z = 0$, if $f(z) = \frac{Im z}{ z }$, $z \neq 0$	
	= 0, z = 0	
a)	Find the image of the lines $x=1$, $y=2$ and $x>0$, $y<0$ under the mapping $W=z^2$	(8)
b)	Find the image of the semi-infinite strip $x > 0$, $0 < y < 2$ under the transformation	(7)
	w=iz+1. Draw the regions.	
	PART B Answer any two full questions, each carries 15 marks.	
a)		(8)
u)	•	(0)
b)		(4)
- /	Evaluate $\int_{z(z-1)}^{z} dz$ over the chere $ z ^{-2}$	(-)
	a)b)a)a)	Course Code: MA201 Course Name: LINEAR ALGEBRA AND COMPLEX ANALYSIS ax. Marks: 100 PART A Answer any two full questions, each carries 15 marks. a) Find the points where Cauchy-Riemann equations are satisfied for the function f(z) = xy² + i x² y. Where does f (z) exist? Is the function f(z) analytic at those points? b) If v = e ^x (x sin y + y.cos y), find an analytic function f(z)=u+iv. a) Show that u = x²-y²-y is harmonic. Also find the corresponding conjugate harmonic function. b) (i) Find a bilinear transformation which maps (−i, 0, i) onto (0, -1, ∞). (ii) Test the continuity at z = 0, if f(z) = lmz/ z , z ≠ 0 = 0, z = 0 a) Find the image of the lines x=1, y=2 and x>0, y<0 under the mapping W= z² b) Find the image of the semi-infinite strip x > 0, 0< y < 2 under the transformation w=iz+1. Draw the regions. PART B Answer any two full questions, each carries 15 marks. a) Evaluate ∮ Re z²dz over the boundary C of the square with vertices 0, i, 1+ i,1 clockwise

- c) Evaluate $\int \frac{3z^2 + 7z + 1}{z + 1} dz$ over the circle |z + i| = 1 (3)
- 5 a) Expand $\frac{z}{(z-1)(z-2)}$ in (1) 0 < |z-2| < 1, (2) |z-1| > 1 (8)
 - b) Evaluate $\int_0^{2\pi} \frac{1}{2 + \cos \theta} d\theta$ (7)
- 6 a) Using Residue theorem evaluate $\int \frac{z^2}{(z-1)^2(z+2)} dz$ over the circle |z|=3 (7)
 - b) Find the Taylor series of $\frac{\sin z}{z-\pi}$ about the point $z=\pi$ (4)

A A7046

c) Evaluate $\int \frac{\sin z}{z^6} dz$ over the circle |z|=2 using Cauchy's Residue theorem. (4)

Answer any two full questions, each carries 20 marks.

- Solve by Gauss-Elimination method x + y + z = 6, x + 2y 3z = -4, -x 4y + 9z = 18. 7 (7)
 - Find the values of 'a' and 'b' for which the system of equations x + y + 2z = 2, 2x-y+3z=10,5x-y+az=b has: (7)
 - (i) no solution (ii) unique solution (iii) infinite number of solutions.
 - c) Verify whether the vectors (1,2,1,2), (3,1,-2,1), (4,-3,-1,3) and (2,4,2,4) are linearly independent in R⁴. (6)
- Write down the matrix associated with the quadratic form $8x_1^2 + 7x_2^2 + 3x_3^2 12x_1x_2$ 8 -8x₂x₃+4x₃x₁. By finding eigen values, determine nature of the quadratic form. (7)
 - Diagonalise the matrix $A = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 0 & 2 \\ 0 & 2 & -1 \end{bmatrix}$ b) (7)
 - If A is a symmetric matrix, verify whether AA^T and A^TA are symmetric? (6)
- Find the eigen vectors of $A = \begin{bmatrix} 3 & 0 & 0 \\ 5 & 4 & 0 \\ 3 & 6 & 1 \end{bmatrix}$ 9 (8) a)
 - Find the null space of AX=0 if $A = \begin{bmatrix} 1 & 1 & 0 & 2 \\ -2 & -2 & 1 & -5 \\ 1 & 1 & -1 & 3 \\ 4 & 4 & -1 & 9 \end{bmatrix}$ $\text{Verify whether } A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix} \qquad \text{is orthogonal.}$ b) (6)
 - (6)

What can you say about determinant of an orthogonal matrix? Prove or disprove the result.
